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Este  trabajo  pretende  demostrar  una  comprensión  profunda  de  los  principios  del  modelo  y  su  
importancia  en  los  mercados  financieros,  reflejando  el  conocimiento  adquirido  a  través  de  un  
estudio  riguroso  y  rigor  matemático.

1  de  enero  de  2025

Este  documento  presenta  una  visión  integral  del  modelo  Black­Scholes­Merton,  piedra  angular  
de  las  finanzas  cuantitativas.  Explora  sus  fundamentos  teóricos,  supuestos  y  aplicaciones  
prácticas  en  la  valoración  de  opciones.
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donde  ฀ t  ฀   N  (0,  σ2 )

•  Por  qué  necesitamos  modelos:  Las  opciones  tienen  resultados  no  lineales;  necesitamos  una  forma  sistemática  
de  valorarlas  en  condiciones  de  incertidumbre.

•  Como  ∆t  →  0,  esto  conduce  al  proceso  de  Wiener  (movimiento  browniano)

,

5

El  modelo  Black­Scholes­Merton,  publicado  en  1973  por  Fischer  Black,  Myron  Scholes  y  Robert  Merton,  revolucionó  
la  valoración  de  opciones  al  ofrecer  una  solución  de  formato  cerrado  para  opciones  de  tipo  europeo.  Constituye  la  
base  de  la  valoración  moderna  de  derivados  y  sirve  de  base  para  muchos  modelos  más  extendidos  o  sofisticados  
(p.  ej.,  volatilidad  estocástica  y  difusión  por  saltos).

•  Paseo  aleatorio  discreto:  Xt+1  =  Xt  +  ฀ t

Punto  clave:  Black­Scholes­Merton  (BSM)  proporcionó  el  primer  método  matemáticamente  riguroso  
y  ampliamente  aceptado  para  fijar  el  precio  de  una  opción  de  compra  o  venta  europea,  cambiando  
drásticamente  el  panorama  de  las  finanzas.

Los  derivados  son  instrumentos  financieros  cuyo  valor  se  deriva  de  un  activo  subyacente  (por  ejemplo,  acciones,  
bonos,  materias  primas).  Las  opciones,  un  tipo  de  contrato  derivado,  otorgan  el  derecho  (pero  no  la  obligación)  de  
comprar  o  vender  un  activo  a  un  precio  de  ejercicio  específico  antes  o  al  vencimiento.

Punto  clave:  Las  opciones  proporcionan  beneficios  de  apalancamiento  y  cobertura,  lo  que  las  hace  
cruciales  en  la  gestión  de  riesgos.

Punto  clave:  Sin  un  marco  de  precios  sólido,  los  mercados  pueden  fijar  precios  incorrectos  del  
riesgo,  lo  que  genera  posibles  ineficiencias  u  oportunidades  de  arbitraje.

Un  proceso  estocástico  es  una  secuencia  {Xt}  de  variables  aleatorias  indexadas  por  t.  En  un  contexto  financiero,  
esto  representa  cómo  los  precios  de  los  activos  varían  aleatoriamente  a  lo  largo  del  tiempo.

•  Eficiencia  del  mercado:  Un  modelo  de  precios  sólido  ayuda  a  garantizar  precios  de  mercado  justos,  reducir  
el  arbitraje  y  ayudar  en  la  toma  de  decisiones  financieras  (cobertura,  especulación,  etc.).

1  Introducción  y  contexto

2  Procesos  estocásticos  y  el  proceso  de  Wiener

Aurokrishnaa  RL Una  exploración  rigurosa  del  modelo  Black­Scholes­Merton:

2.1  Procesos  estocásticos

1.2  Importancia  de  los  modelos  de  valoración  de  opciones

1.1  Introducción  a  las  opciones  y  derivados

1.3  La  importancia  del  modelo  Black­Scholes  Merton

2.2  Paseo  aleatorio  →  Límite  continuo

Machine Translated by Google



3  Movimiento  browniano  geométrico  (GBM)

(3)

,

Integrar  ambos  lados  de  0  a  t:

µ  du  +

(1)

•  µ:  Deriva  (rendimiento  esperado)

El  proceso  de  Wiener  constituye  la  base  de  los  modelos  de  tiempo  continuo  en  finanzas:

(2)

•  St :  Precio  de  la  acción  en  el  momento  t

3.  Propiedad  clave:  E[dWt ]  =  0,  Var(dWt)  =  dt

•  Peso :  Proceso  estándar  de  Wiener

Podemos  reescribir  la  SDE  en  forma  relativa:

dSt  
=  µ  dt  +  σ  dWt .

σdWu .

El  lado  izquierdo  se  convierte  en  ln  St  −  ln  S0.

Esta  formulación  es  crucial  en  las  derivaciones  de  Black­Scholes­Merton.

1.  Definición:  Wt  con  W0  =  0,  incrementos  independientes  y  Wt  −  Ws  ฀   N  (0,  t  −  s)

dSt  =  µSt  dt  +  σSt  dWt

•  σ:  Volatilidad

(4)=

6

dSu

2.  Notación  diferencial:  dWt  ฀   √  dt  Z,  donde  Z  ฀   N  (0,  1)

dónde:

dSt  =  µSt  dt  +  σSt  dWt  (próximamente  en  GBM)

La  ecuación  diferencial  estocástica  (EDS)  para  el  movimiento  browniano  geométrico  es:

Una  exploración  rigurosa  del  modelo  Black­Scholes­Merton:Aurokrishnaa  RL

3.1  SDE  para  GBM

2.3  Proceso  de  Wiener  (movimiento  browniano)

2.4  Solicitud  de  Finanzas

3.3  Solución  mediante  integración

3.2  Reescribir  en  forma  relativa

el el

Su0

el

0

Calle

0
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1
2

2  2  ∂  
b  
∂X2

2

1  2  σ  
2

1  2  σ  
2

1
2

3.5  Expresión  de  forma  cerrada

3.4  Registro  de  St

3.6  Distribución  lognormal

4.1  Declaración  general

4.2  Motivación

3.7  Relevancia  en  Finanzas

Aurokrishnaa  RL Una  exploración  rigurosa  del  modelo  Black­Scholes­Merton:

dXt  =  a(Xt ,  t)  dt  +  b(Xt ,  t)  dWt .

La  solución  en  forma  cerrada  para  St  es:

(7)  

(8)

término

ln  St  se  distribuye  normalmente  con:

t  +  σWt .
1

∂X2

•  Captura  la  deriva  y  la  volatilidad  de  manera  realista  y  continua.

(6)

Media  =  ln  S0  +  µ  −

(9)

(10)

Por  lo  tanto,  St  ฀   Lognormal(. . .).

∂  2  V

2  σ

t  +  σWt .

dV  =

Sea  Xt :

t,

•  Supuesto  BSM:  los  precios  de  las  acciones  siguen  el  GBM  para  la  fijación  de  precios  de  opciones  en  el  tiempo  continuo.

ln  St  −  ln  S0  =  µt  −  2

A  menudo  necesitamos  d(฀ (St))  para  una  función  ฀ ,  p.  ej.,  ฀ (St)  =  ln(St)  o  el  pago  de  una  opción.  La  
diferenciación  ordinaria  falla  porque  dWt  tiene  varianza  ฀   dt.  La  clave  es  que  surge  un  extra  de  
la  parte  estocástica.

∂V  ∂V  +  a  +  
∂t  ∂X

7

Usando  el  Lema  de  Ito  (ver  Parte  4  para  detalles  de  derivación),  obtenemos:

Para  V  (t,  Xt),  el  lema  de  Ito  establece:

Varianza  =  σ

(5)

b
∂V  

dt  +  b  dWt .∂X

2  

toneladas

St  =  S0  exp  µ  −

4  Lema  de  Ito
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1  2  σ  2 1  2  σ  2

el

2

1  2

2

2
elCalle

5.2  Teorema  de  Girsanov  (alto  nivel)

4.5  Contexto  financiero

4.3  Derivación  (Esquema  simplificado)

4.4  Ejemplo:  V  =  ln(St)

5.3  SDE  neutral  al  riesgo  para  el  precio  de  las  acciones

5.1  Concepto  de  neutralidad  de  riesgo

Una  exploración  rigurosa  del  modelo  Black­Scholes­Merton:Aurokrishnaa  RL

∂S2

(12)

∂S

El  lema  de  Ito  es  esencial  para  derivar  ecuaciones  diferenciales  parciales  (EDP)  de  fijación  de  precios  de  opciones,  valoraciones  

neutrales  al  riesgo  y  otras  transformaciones  (por  ejemplo,  de  St  a  ln  St  o  de  un  precio  de  un  activo  a  un  pago  de  una  opción).

(11)

1

La  idea  clave  es  fijar  el  precio  de  un  derivado  tomando  el  valor  esperado  de  su  pago  descontado  bajo  una  medida  
neutral  al  riesgo  Q.  En  un  mundo  sin  arbitraje  con  una  tasa  constante  libre  de  riesgo  r:

En  términos  estocásticos:

1

dt  +  σdWt . (14)

(16)

Bajo  Q  neutral  al  riesgo:

S

8

dSt  =  µSt  dt  +  σSt  dWP

t ,

∂V  ∂V

=  −

∂

,

r.

∆X  =  a∆t  +  b∆W,  (∆W)

Original  (mundo  real):

Reúna  términos  en  ∆t  y  ∆W.  El  límite  cuando  ∆t  →  0  produce  la  fórmula  de  Ito.

La  idea  es  expandir  V  (t  +  ∆t,  Xt+∆t)  con  una  serie  de  Taylor:

=

V  (t  +  ∆t,  Xt  +  ∆t)  ≈  V  +  ∆t  +  ∆X  +  ∂t  ∂X

Supóngase  que  dSt  =  µSt  dt  +  σSt  dWt .  Entonces  V(t,  St)  =  ln(St).  Calcular  las  derivadas  parciales:

El  teorema  de  Girsanov  cambia  la  medida  de  la  medida  del  mundo  real  P  a  la  medida  neutral  al  
riesgo  Q.  Bajo  Q,  la  deriva  del  activo  se  convierte  en  r,  es  decir,  µ  se  reemplaza  por

≈  ∆t.

∂  2  
V  (∆X)

Conéctese  al  lema  de  Ito:

, . (13)

∂t(ln  St)  +  µ  −

Precio  derivado  en  t  =  e

(17)

dt  +  σ  dWt  =  µ  −

dSt  =  rSt  dt  +  σSt  dWQ  

donde  WQ  es  un  proceso  de  Wiener  bajo  Q.

−r(T  −t)  E  Q  Pago  en  T  |  Ft .

+ . . .

∂V

∂X2

(15)

d(ln  St)  =

t .

∂  2  V

5  Valoración  neutral  al  riesgo
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∂V∂S

6.2  Cartera  sin  arbitraje  y  sin  riesgo

6.1  Argumento  de  cobertura

5.4  El  precio  del  activo  descontado  es  una  martingala

5.5  Fórmula  práctica

6.3  Dinámica  de  Πt

6.4  Inserte  ∆  =

Aurokrishnaa  RL Una  exploración  rigurosa  del  modelo  Black­Scholes­Merton:

.

Ejemplo  de  un  call  europeo  con  un  pago  máximo  (ST  −  K,  0):  E  Q  

máx.  (ST  −  K,  0).

V0  =  e

para  eliminar  la  exposición  a  dSt  en  primer  orden.  Entonces  Πt  debería  ganar  el

t .

Considere  una  derivada  V(t,  St).  Cubra  mediante  posiciones  cortas  en  ∆  unidades  del  subyacente  St.  La  cartera  
es:

evoluciona  con  deriva  cero  (propiedad  de  martingala):

9

Del  Lema  de  Ito  (Parte  4)  y  la  SDE  para  St  bajo  la  medida  neutral  al  riesgo  (Parte  5):

Valor  derivado  en  el  tiempo  0:

(19)

(26)

(22)

dS˜

Por  eso,

Los  términos  dSt  se  cancelan  exactamente.

∂  2V  
(σ  2S  2 )  dt,  ∂S2

∂V  ∂V  dV  =  dt  
+  dSt  +  ∂S

Esto  implica  que  no  hay  almuerzo  gratis:  el  crecimiento  esperado  bajo  Q  es  exactamente  r,  por  lo  que  el  precio  
descontado  no  tiene  deriva.

(24)

(21)

dΠt  =  dV  −  ∆  dSt .

(20)

E  Q  Pago(ST ).

Πt  =  V(t,  St)  −  ∆  St .

C0  =  e

dΠt  =  r  Πt  dt.

t .

∂V  
dΠt  =  dt  +  ∂t

(25)

dSt  =  rSt  dt  +  σSt  dWQ

∂  2V  ∂V  σ  2S  2  
dt  dSt  −  ∆  dSt  +  ∂S2  ∂S

=  e  −rtσSt  dWQ

(23)

=  e  −rtSt .  Bajo  Q,  S˜Definir  S˜

Elija  ∆  =  tasa  

libre  de  riesgo  r  si  realmente  es  libre  de  riesgo:

Sustituir  en  dΠt :

(18)

∂t

6  Derivación  de  la  EDP  de  Black­Scholes

el

términos  no  cancelados

1  2

cubierto

2

el

−rT

elel

el

∂V∂S

1

−rT
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1  2  σ  
2

el

2

∂x  
∂S

1

−αx−βt

∂x  
∂t

2
1

1  2

1

1  2  σ  
2

7.2  Transformaciones  clave

7.3  Derivar  EDP  en  τ,  x

7.1  EDP  de  Black­Scholes  (de  la  Parte  6)

6.6  PDE  de  Black­Scholes

6.5  Equivalente  al  crecimiento  libre  de  riesgo

6.7  Interpretación

7.4  Forma  resultante  de  la  “ecuación  de  calor”

Una  exploración  rigurosa  del  modelo  Black­Scholes­Merton:Aurokrishnaa  RL

∂x

Cambio  de  variables:

=

(31)

.

∂V  ∂V  +  rS  +  
∂S

∂  2V  ∂V  σ  2S  2  =  r  V  −  
St  ∂S2  ∂S∂t

=

S ,

∂u
∂τ

10

τ  =  T  −  t  (tiempo  hasta  el  vencimiento),  x  =  ln(S).

(32)

Esta  es  la  EDP  básica  para  determinar  el  precio  de  una  opción  de  estilo  europeo  sobre  una  acción  que  
no  paga  dividendos.  El  siguiente  paso  (Parte  7)  muestra  la  transformación  a  una  ecuación  de  calor.

A  menudo  se  establece  un  ansatz,  por  ejemplo:

(28)

Equiparar:

∂V  ∂V  +  r  St  +  
∂t  ∂S (29)

∂t

∂2u  
+  r  −

∂V+

Con  más  manipulaciones  (y  eligiendo  α,  β  adecuadamente),  esto  se  reduce  a  una  ecuación  de  calor  
estándar  en  la  variable  τ.

(33)

∂  2V  
σ  2S  2  −  r  V  =  0.  ∂S2

(27)
Sin  arbitraje,

u(τ,  x),

Forma  final  típica  (versión  simplificada):

Calcular  derivadas  parciales  de  V  con  respecto  a  t,  S  y  sustituir  en  la  EDP  de  Black­Scholes.

∂u

(30)

­  r  u.

Arreglar  de  nuevo:

V  (t,  S)  =  e  

donde  α  y  β  son  constantes  elegidas  para  simplificar  los  términos  (los  detalles  varían  según  la  referencia).

∂x2

dΠt  =  r  Πt  dt  =  r  V  −  ∆  St  dt.

Después  de  un  álgebra  cuidadosa  (usando  =  0,  etc.),  se  obtiene  una  EDP  de  tipo  difusión  para  u(τ,  x).

∂  2V  
σ  2S  2  −  rV  =  0.  ∂S2

7  Analogía  de  la  ecuación  del  calor
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8.5  Intuición  de  d1,  d2

(37)

11

C0  =  e

entonces

+  r  +
d2  =  d1  −  σ  √  T .

Por  paridad  put­call  o  directamente:

P0  =  K  e−rT  N(−d2)  −  S0  N(−d1).

en  
S0  d1  =

Z  ฀   N  (0,  1).

dónde

Pago  al  vencimiento  T:  máx.  (ST  −  K,  0).  Bajo  la  medida  neutral  al  riesgo  Q:

métodos  de  solución.
•  Más  fácil  de  resolver:  la  transformación  en  una  ecuación  de  calor/difusión  aprovecha  la  conocida

Después  de  resolver  la  EDP  transformada  (Parte  7),  obtenemos:

•  d2  =  d1  −  σ  √  T  se  desplaza  por  volatilidad/tiempo.

•  Esta  fórmula  revolucionó  la  fijación  de  precios  de  derivados  (práctica,  forma  cerrada).

Si  St  sigue

(39)

•  Analogía:  Conducción  de  calor  en  física  ↔  Difusión  del  precio  de  las  opciones  en  finanzas.

•  S0  N(d1):  Probabilidad  “ajustada  al  riesgo”  de  terminar  con  dinero  en  Q.

•  K  e−rT  N(d2):  Pago  de  ejercicio  descontado,  también  bajo  Q.

(35)

T

•  d1  se  relaciona  con  la  puntuación  z  del  precio  logarítmico  esperado  en  relación  con  el  precio  de  ejercicio.

(36)

,

,ST  =  S0  exp  r  − T  +  σ  √  TZ

E  Q  máx(ST  −  K,  0) .

dSt  =  rSt  dt  +  σSt  dWQ

(38)

(34)

t ,

σ  √  

TN(∙)  es  la  función  de  distribución  acumulativa  de  la  distribución  normal  estándar.

Una  exploración  rigurosa  del  modelo  Black­Scholes­Merton:Aurokrishnaa  RL

8.3  Resultado  estándar  mediante  ecuación  de  calor  o  integración  directa

8.2  Distribución  lognormal  de  ST

7.5  Importancia

8.1  Opción  de  compra  europea

8.4  Opción  de  venta  europea

8.6  Interpretación

1  2  σ  
2

1  2  σ  
2

−rT

C0  =  S0  N(d1)  −  K  e−rT  N(d2),

K

8  Solución  de  forma  cerrada  de  Black­Scholes
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∂V  
∂σ .

Para  una  convocatoria  europea  (de  la  Parte  8):

(41)

Definición:  ν  =

Definición:  Θ  =  (a  menudo  expresado  como

mi

con  T  =  tiempo  hasta  el  vencimiento).

(40)

Para  una  Convocatoria  Europea  (en  términos  de  tiempo  hasta  el  vencimiento  T):

1

Interpretación:  Mide  qué  tan  rápido  cambia  ∆  con  S0.

∂∆  
∂S0 .

donde  N

Para  una  convocatoria  europea:

(d1)  =  
√  2π

Interpretación:  Cambio  aproximado  en  el  precio  de  la  opción  por  un  cambio  de  $1  en  el  activo  subyacente.

.

Interpretación:  Sensibilidad  a  cambios  en  las  tasas  de  interés.

Para  una  convocatoria  europea:

Definición:  ρ  =

S0  σ  √  T

(42)

Para  una  convocatoria  europea:

Interpretación:  Sensibilidad  a  los  cambios  de  volatilidad.

Interpretación:  “Decaimiento  temporal”  diario  del  valor  de  la  opción.

=

(44)

∂V∂r .

Propósito:  Medir  cómo  cambia  el  valor  de  la  opción  V  con  respecto  a  los  parámetros:  S0  (precio  subyacente),  σ  

(volatilidad),  r  (tasa  de  interés)  y  t  (tiempo).

Γ  =

12

∂V  Definición:  ∆  =  ∂S0 .

(43)

Definición:  Γ  =

,

9.3  Gamma  Γ

9.1  Resumen  de  los  griegos

9.2  Delta  ∆

9.5  Theta  Θ

9.6  Rho  ρ

9.4  Vega  ν

Una  exploración  rigurosa  del  modelo  Black­Scholes­Merton:Aurokrishnaa  RL

9  Griegos  y  análisis  de  sensibilidad

N′  (d1)

∂2V∂S2

S0  N′  (d1)  σ  −  r  
K  e−rT  N(d2).  Θ  ≈  −  2  √  T

2  

días  

1  2
"

∂V  
∂t

ρ  =  KT  e−rT  N(d2).

∂V∂T

∆llamada  =  N(d1).

−

ν  =  S0  √  T  N′  (d1).

0
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2  
1  σ  2

10.2  Métodos  de  diferencias  finitas

9.7  Uso  práctico

10.1  ¿Por  qué  numérico?

10.4  Consideraciones  prácticas

11.1  Acciones  que  pagan  dividendos

10.3  Simulaciones  de  Monte  Carlo

Una  exploración  rigurosa  del  modelo  Black­Scholes­Merton:Aurokrishnaa  RL

•  Precisión  ↑  como  número  de  caminos  ↑.

t .

La  fórmula  de  Black­Scholes  se  modifica  a:

•  Algunas  derivadas  (por  ejemplo,  dependientes  de  la  trayectoria)  carecen  de  soluciones  de  forma  cerrada.

•  Discretizar  la  EDP  de  Black­Scholes  en  el  tiempo  y  en  el  espacio  de  precios  de  acciones.

•  Simular  trayectorias  aleatorias  bajo  la  medida  neutral  al  riesgo:

C0  =  S0e  −qTN(d1)  −  Ke−rTN(d2), (47)

•  Aproximación  mediante  métodos  computacionales.

13

para  iterar  y  encontrar  V .

•  Esquemas:  Explícito,  Implícito,  Crank­Nicolson.

(45)St+∆t  =  St  exp  r  −

•  Análisis  de  escenarios:  evaluar  cómo  podría  cambiar  el  valor  de  una  opción  si  cambia  σ  o  S0 .

•  Gestión  de  riesgos:  los  operadores  ajustan  los  ratios  de  cobertura,  monitorean  la  exposición  a  Gamma,  etc.

•  Compensación:  más  puntos  de  cuadrícula/más  rutas  →  mayor  precisión,  pero  más  computación

dSt  =  (r  −  q)St  dt  +  σSt  dWQ (46)

∆t  +  σ  √  ∆t  Z Z  ฀   N  (0,  1).

•  Utilizar  condiciones  de  contorno  (pago  de  la  opción  al  vencimiento,  comportamiento  cuando  S  →  0  o  S  →  ∞)

•  Calcular  el  rendimiento  para  cada  ruta,  el  descuento  y  el  promedio.

,

tación.

•  Ampliamente  utilizado  para  opciones  exóticas  donde  los  enfoques  PDE  son  complejos.

Si  el  rendimiento  continuo  del  dividendo  =  q,  entonces  bajo  Q:

11  Extensiones  del  modelo

10  métodos  numéricos
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el

1  2  σ  
2K

Aurokrishnaa  RL Una  exploración  rigurosa  del  modelo  Black­Scholes­Merton:

T+  r  −  q  +  σ  √  T

t .

•  Modelos  de  tasas  de  interés  (Hull–White,  etc.)  para  derivados  de  tasas  de  interés.

•  K  =  110  (huelga)

Las  direcciones  vol  smile/skew  no  se  capturan  mediante  la  constante  σ.

(49)

•  Posibilidad  de  ejercicio  anticipado  (por  ejemplo,  opción  de  venta  estadounidense  sobre  acciones  sin  dividendos).

•  No  existe  una  forma  cerrada  simple  (excepto  algunos  casos  especiales).

•  r  =  0,05  (tasa  libre  de  riesgo)

Modelo  de  Heston:  La  volatilidad  sigue  su  propia  SDE,  por  ejemplo,

d2  =  d1  −  σ  √  T .

•  Métodos:  Árboles  Binomiales,  Diferencias  Finitas  con  condición  de  borde  libre.

dSt  =  rSt  dt  +  σSt  dWQ  +  saltos.

Útil  para  capturar  movimientos  de  precios  grandes  y  discretos.

•  Volatilidad  local:  σ  =  σ(St ,  t).

dónde

,

(50)

•  S0  =  100  (precio  actual  de  la  acción)

Añadir  saltos  a  la  dinámica  de  precios  (por  ejemplo,  modelo  de  salto  de  Merton):

•  σ  =  0,20  (volatilidad)

dνt  =  κ(θ  −  νt)  dt  +  ξ  √  νt  dWν

14

en  S0  
d1  = (48)

•  T  =  1  año  (tiempo  hasta  el  vencimiento)

12  Ejemplo  práctico

11.5  Otras  extensiones

11.3  Modelos  de  volatilidad  estocástica

11.2  Opciones  americanas

11.4  Modelos  de  difusión  por  salto

12.1  Parámetros  dados

Machine Translated by Google



12.4  Conéctese  a  la  fórmula  de  compra  de  Black­Scholes

12.2  Calcular  d1  y  d2

12.3  Encuentra  N(d1)  y  N(d2)

12.5  Interpretación

Una  exploración  rigurosa  del  modelo  Black­Scholes­Merton:Aurokrishnaa  RL

T+  r  +

σ√T

Por  eso,

N(d1)  =  1  −  0,4496  =  0,5504,  N(d2)  =  0,3724  (corregido).

≈  38,98.

S0N(d1)  =  100  ×  0,5504  =  55,04,  

Ke−rTN(d2)  =  110  e

N(−0,1265)  ≈  0,4496,  N(−0,3265)  ≈  0,3724.

C0  ≈  55,04  −  38,98  =  16,06.

0,2  
≈  −0,1265.

=

≈  110  ×  0,3544

en  d1  =

15

0,2  √  1  

ln(0,9091)  +  0,05  +  0,02  0,2  −0,0953  

+  

0,07

d2  =  d1  −  σ  √  T .

=

Calcular  cada  término:

d2  =  −0,1265  −  0,2  ≈  −0,3265.

,

Insertar  números:

en  
S0  d1  =

0,2  
−0,0253

(52)

≈  110  ×  0,9512  ×  0,3724

•  Más  alto  que  las  expectativas  ingenuas  porque  todavía  hay  una  posibilidad  considerable  de  que  la  acción  pueda...

+  0,05  +  0,5  ×  0,2

Utilice  una  tabla  CDF  normal  estándar  o  una  calculadora:

Por  eso,

×  1

•  Precio  de  llamada  ≈  16,06.

×  0,3724

terminar  por  encima  de  110  en  un  año,  más  factores  de  valor  temporal  y  volatilidad.

=

C0  =  S0N(d1)  −  Ke  −  rTN(d2).

(51)

2

K
1  2  σ  
2

100  
110

−0,05×1
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13.1  Supuestos  vs.  Mercados  Reales

13.2  Desafíos  prácticos

Aurokrishnaa  RL Una  exploración  rigurosa  del  modelo  Black­Scholes­Merton:

13  Limitaciones  del  modelo  Black­Scholes  y  la  práctica

Implicaciones  prácticas

•  Los  precios  reales  pueden  subir  debido  a  noticias  o  eventos  inesperados,  algo  que  este  modelo  no  hace.

•  Supone  que  los  traders  pueden  reequilibrar  sus  posiciones  continuamente  sin  demoras.

El  modelo  de  Black­Scholes  hace  ciertas  suposiciones  que  no  coinciden  totalmente  con  el  funcionamiento  de  los  
mercados  reales:

13.2.1  Precios  erróneos

13.1.2  Sin  costos  de  transacción

Las  opciones  pueden  tener  precios  incorrectos,  y  las  griegas  (como  Delta  y  Vega)  pueden  no  ser  siempre  precisas.  Esto  
puede  generar  estrategias  de  cobertura  deficientes  y  pérdidas  inesperadas.

13.2.2  Ajustes  por  parte  de  los  comerciantes

o  baja  liquidez.

•  El  modelo  supone  que  la  volatilidad  se  mantiene  igual  a  lo  largo  del  tiempo.

•  Pero  en  la  vida  real,  la  cobertura  se  produce  a  intervalos  (discreta),  lo  que  puede  ser  costoso  y  generar  
pequeños  riesgos.

13.1.4  Sin  saltos  en  los  precios

Estas  suposiciones  pueden  crear  problemas  en  el  mundo  real:

Los  traders  a  menudo  utilizan  superficies  de  volatilidad  implícita  (ajustes  a  las  realidades  del  mercado)  o  adoptan  
modelos  más  avanzados  para  lidiar  con  estas  brechas.

16

•  En  realidad,  la  volatilidad  cambia  y  depende  de  los  precios  de  ejercicio  y  los  vencimientos,  lo  que  crea

captura.

13.1.1  Volatilidad  constante

•  El  modelo  supone  que  la  negociación  no  tiene  costos  (ni  comisiones,  ni  diferenciales  entre  oferta  y  demanda,  ni  deslizamiento).

La  volatilidad  sonríe  y  sesga.

13.1.3  Cobertura  continua

•  En  los  mercados  reales,  estos  costos  pueden  ser  significativos,  especialmente  durante  períodos  de  alta  volatilidad.

•  El  modelo  supone  que  los  precios  de  las  acciones  se  mueven  suavemente.
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14  Resumen  y  mi  recorrido  de  aprendizaje

¡Ha  sido  un  viaje  increíble  recorrer  el  modelo  Black­Scholes!  Permítanme  explicarlo.

Estos  modelos  permiten  que  la  volatilidad  varíe  con  el  tiempo.  Por  ejemplo,  el  modelo  de  Heston  es  popular  en  la  
práctica.

13.3.3  Modelos  de  difusión  por  salto

El  lema  de  Ito  fue  difícil  de  descifrar.  Pero  una  vez  que  lo  vi  aplicado  a  la  valoración  de  opciones,  ¡entendí!  Es  
como  una  regla  especial  para  lidiar  con  la  aleatoriedad  en  cálculo.

El  concepto  de  valoración  neutral  al  riesgo  es  muy  intuitivo.  La  idea  de  que  podamos  fijar  el  precio  de  las  
opciones  como  si  todas  fueran  neutrales  al  riesgo  es  contraintuitiva,  pero  muy  útil.

Todo  empezó  con  procesos  estocásticos.  Recuerdo  que  al  principio  me  sentí  un  poco  abrumado,  pero  es  
fascinante  cómo  se  puede  modelar  matemáticamente  la  aleatoriedad.
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Para  abordar  estos  problemas,  se  han  desarrollado  algunas  versiones  mejoradas  del  modelo  Black­Scholes:

Derivar  la  ecuación  diferencial  parcial  (EDP)  de  Black­Scholes  fue  como  armar  un  rompecabezas  complejo.  
Cada  pieza,  desde  el  lema  de  Ito  hasta  la  cartera  libre  de  riesgo,  encajó  a  la  perfección.

La  analogía  de  la  ecuación  del  calor  fue  revolucionaria  para  mí.  Ver  cómo  se  relaciona  el  precio  de  las  
opciones  con  la  difusión  del  calor  en  la  física  hizo  que  las  matemáticas  parecieran  más  tangibles  y  menos  
abstractas.

13.3.2  Modelos  de  volatilidad  local

13.3.1  Modelos  de  volatilidad  estocástica

Finalmente,  llegar  a  la  solución  en  forma  cerrada  fue  como  alcanzar  la  cima  de  una  montaña.  Después  de  todas  
las  complejas  derivaciones,  ver  esa  elegante  fórmula  para  la  valoración  de  opciones  fue  realmente  gratificante.

•  Luego  llegó  el  Movimiento  Browniano  Geométrico  (MBG).  Aprender  cómo  describe  los  precios  de  las  acciones  
fue  una  auténtica  maravilla  para  mí.  Es  asombroso  cómo  una  simple  ecuación  puede  captar  la  imprevisibilidad  
del  mercado.

Modelos  como  el  modelo  Merton  Jump­Diffusion  incluyen  saltos  repentinos  de  precios  junto  con  cambios  de  precios  
regulares  para  manejar  mejor  los  eventos  inesperados.

Estos  utilizan  datos  del  mercado  para  ajustar  la  volatilidad  en  función  del  precio  de  las  acciones  y  el  tiempo,  
proporcionando  precios  más  precisos.

Una  exploración  rigurosa  del  modelo  Black­Scholes­Merton:Aurokrishnaa  RL

13.3  Extensiones  para  mejorar  el  modelo

14.1  La  aventura  de  Black­Scholes­Merton
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14.4  Aplicaciones  prácticas  y  ajustes

14.2  La  belleza  de  Black  Scholes

14.3  Reconociendo  las  limitaciones

Una  exploración  rigurosa  del  modelo  Black­Scholes­Merton:Aurokrishnaa  RL

•  El  supuesto  de  volatilidad  constante  ahora  me  parece  demasiado  simplificado.  Real

•  La  simplicidad  y  elegancia  de  la  fórmula  son  asombrosas.  Con  solo  unos  pocos  pasos,

A  pesar  de  sus  limitaciones,  he  aprendido  que  el  modelo  de  Black­Scholes  todavía  se  utiliza  ampliamente:

Herramientas  poderosas  para  la  gestión  de  riesgos.  Es  como  tener  un  GPS  financiero.

Me  da  una  nueva  perspectiva  sobre  la  innovación  financiera.

¿Qué  hace  que  este  modelo  me  parezca  tan  impresionante?

Podemos  poner  precio  a  las  opciones:  ¡parece  un  tesoro!

•  Ignorar  los  costos  de  transacción  y  asumir  un  comercio  continuo  son  ideales.  Entiendo  cómo  estas  suposiciones  
podrían  generar  problemas  prácticos  en  el  comercio  real.

La  dificultad  del  modelo  para  afrontar  eventos  extremos  o  subidas  repentinas  de  precios  es  una  limitación  
importante.  Me  ha  hecho  comprender  la  importancia  de  considerar  los  eventos  de  "cisne  negro"  en  las  
finanzas.

•  Me  parece  interesante  cómo  el  modelo  sirve  como  lenguaje  común  en  el  ámbito  financiero.

A  medida  que  profundicé,  comencé  a  ver  dónde  falla  el  modelo:

•  Aprender  sobre  cómo  el  modelo  condujo  al  crecimiento  de  los  mercados  de  derivados  ha  dado

Los  mercados  son  mucho  más  dinámicos.

•  El  concepto  de  volatilidad  implícita  me  fascina.  Es  ingenioso  cómo  los  operadores  lo  utilizan  para  aplicar  

ingeniería  inversa  a  los  precios  del  mercado  y  ajustar  el  modelo.

Me  asombra  cómo  este  modelo  se  convirtió  en  la  piedra  angular  de  la  teoría  financiera  moderna.  No  se  trata  

solo  de  la  valoración  de  opciones;  ha  cambiado  nuestra  forma  de  pensar  sobre  el  riesgo  y  la  valoración  
en  finanzas.

Aprender  sobre  las  sonrisas  y  sesgos  de  la  volatilidad  en  los  mercados  de  opciones  reales  fue  revelador.  Me  
mostró  cómo  los  participantes  del  mercado  se  adaptan  a  las  deficiencias  del  modelo.

mundo,  incluso  cuando  se  utilizan  modelos  más  complejos  detrás  de  escena.

•  Aprender  cómo  se  adapta  el  modelo  a  diferentes  activos  (como  monedas  o  materias  primas)  me  mostró  su  
versatilidad.
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•  Los  griegos  (Delta,  Gamma,  Vega,  etc.)  derivados  del  modelo  proporcionan  tales
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14.6  Reflexiones  sobre  mi  trayectoria  en  Black­Scholes

14.5  Mis  futuras  exploraciones

Una  exploración  rigurosa  del  modelo  Black­Scholes­Merton:Aurokrishnaa  RL

Ver  estadísticas  de  publicación

Me  sorprende  cómo  un  solo  modelo  puede  tener  un  impacto  tan  profundo  en  todo  un  campo.

Me  entusiasma  profundizar  en  modelos  más  avanzados,  como  la  volatilidad  estocástica  y  los  modelos  de  
difusión  por  saltos.  ¡El  modelo  de  Heston,  en  particular,  me  parece  fascinante!

Este  viaje  ha  despertado  mi  curiosidad  por  seguir  aprendiendo:

•  Explorar  métodos  numéricos  para  la  valoración  de  opciones  es  mi  siguiente  objetivo.  Me  interesa  comprender  
cómo  funcionan  las  simulaciones  de  Monte  Carlo  y  los  métodos  de  diferencias  finitas.

•  El  mundo  de  las  opciones  exóticas  y  cómo  se  fijan  sus  precios  es  otra  área  que  estoy  ansioso  por  explorar.

Esta  inmersión  profunda  en  el  modelo  Black­Scholes  ha  sido  más  que  simplemente  aprender  una  fórmula;  me  ha  
abierto  una  nueva  perspectiva  financiera.  Desde  comprender  el  cálculo  estocástico  hasta  los  matices  de  la  
valoración  de  opciones,  cada  paso  ha  sido  desafiante,  pero  increíblemente  gratificante.

práctica.

Explorar.  Parece  un  campo  donde  la  creatividad  en  las  finanzas  realmente  brilla.

Me  encantaría  adquirir  experiencia  práctica  con  la  calibración  de  modelos  utilizando  datos  reales  del  mercado.  
Parece  una  excelente  manera  de  conectar  la  teoría  con  la  práctica.

Al  recordar  este  recorrido,  siento  una  sensación  de  logro  combinada  con  entusiasmo  por  lo  que  está  por  venir.  
El  modelo  Black­Scholes  me  ha  dado  una  base  sólida,  pero  ahora  lo  veo  como  un  punto  de  partida  para  explorar  
áreas  aún  más  complejas  y  fascinantes  de  las  matemáticas  financieras.

Estoy  deseando  aplicar  estos  conceptos  en  situaciones  reales  y  seguir  ampliando  mis  conocimientos.  Este  
viaje  ha  reforzado  mi  pasión  por  las  finanzas  y  las  matemáticas,  y  estoy  entusiasmado  con  las  posibilidades  que  
me  esperan  en  mis  estudios  y  mi  futura  carrera  profesional.
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No  se  trata  sólo  de  matemáticas:  se  trata  de  cómo  conceptualizamos  el  riesgo,  el  valor  y  la  naturaleza  de  los  
mercados  financieros.
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